WIFI

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

*SSID: Forthnet
‘User: piop

‘Passwd: piop1234

Digital Research Infrastructure
for the Arts and Humanities

QSLAC V3arian-
Qg Clgmm DARIAH-GR

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

' AWwooec ohpavong Kai
dopEC amoOnkeuong

NixoAaoc INarraodinc
AorTWO Mryavirog

.
'()' oLacg {DARIAH-GR
Aliero YroSepdv yia v Epesva Digital Research Infrastructure
NG AvBp@mOTIRS EMOTAES for the Arts and Humanities

Presentation Overview

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

XML and HTML

XML basics

More... XML

XML Schemas and DTD

Xpath

Databases and SQL -similarities
SPARQL and dbpedia

Graph databases and Neo4J

. ‘n,
'() dvacg DARIAH-GR
Aliero YroSepdv yia v Epesva Digital Research Infrastructure
TS AVBPQMOTIRES EMOTRLES for the Arts and Humaniti

HTML and XML

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

XML stands for eXtensible Markup Language

HTML is used to mark up XML is used to mark up
text so it can be displayed data so it can be
to users processed by computers

HTML describes both structure XML describes only

(e.g. <p>, <h2>,) and “w el
appearance (e.g.
, , <i>) content, or "meaning

HTML uses a fixed, unchangeable In XML you make up your
set of tags y
own tags

Qs dC.' %ARIAH-GR
ommmm‘::" Qi) icant

tal
or the

o 3
Y 2
o
>

HTML and XML

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

* HTML and XML look similar, because they are both SGML
languages (SGML = Standard Generalized Markup Language)

* Both HTML and XML use elements enclosed in tags (e.g.
<body>This is an element</body>)

* Both use tag attributes (e.qg.,
)

* Both use entities (<, >, &, ", ')

* More precisely,

* HTML is defined in SGML
* XML is a (very small) subset of SGML

0(5 ac DARIAH-GR
Aliero YroSepdv yia v Epesva Digital Research Infrastructure
oG AVEpWMOTIRIS EMOTRES for the Arts and Humanl

e 5
]
e
>

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

a C:%Documents and Settings' nkpap'DeskEoptindes

File Edit iew Favorites Tools Help ﬁ

() Back - €3 - (%] [2] @» |) search - Favarites =

Address @ C:\Documents and Settings'l,nkpap'l,DesktDp'l,index.j £
-

Welcome

|N'I'UA 1z Mational Techrical Tuversity of Athens

@ Done l_ l_ |_| i My Computer

. s O
‘()' SLAC “DariaH-GR b 6
Aliero YroSepdv yia v Epesva Digital Research Infrastructure
TS AVBpRMOTIRS EMOTALIS for the Arts and Humanities

. g y L V‘ - ,‘ " 2 4 F
52 +ale L’Qf..’. S5 Al

Its html source code...

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

<html>

<head>

<meta name="generator" content="web mining extractor"/>

<title> </title>

</head>

<body> <p style="font-size: 200%; font-weight: bold">Welcome«</p>

<table border="1" width="100%"> <tr>

<td width="100%">NTUA is National Technical University of Athens</td> </tr><tr>
<td width="100%"></td>
</tr></table>

</body>

</html>

8 dvag %ARIAH-GR “’i

oo YroSopisv yia my Eptuva Digital Research Infrastructure
oTig AvEpWMTIRS EmaTMES for the Arts and Humanities

* . 2 ? Ay
EXSPR BTy W TRy

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

. {,

'()' dvacg DARIAH-GR
Alkroo YmoSopdv yia mv Epeva Digital Research Infrastructure
TS AVBPQMOTIRES EMOTRLES for the Arts and Humanitie:

HTML and XML

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

* HTML is for humans

 HTML describes web pages
* You don't want to see error messages about the web pages you visit

* Browsers ignore and/or correct as many HTML errors as they can, so HTML
is often sloppy

* XML is for computers

* XML describes data

* The rules are strict and errors are not allowed
* In this way, XML is like a programming language

* Current versions of most browsers can display XML
* However, browser support of XML is spotty at best

. ‘n,
'() dvacg DARIAH-GR
Aliero YroSepdv yia v Epesva Digital Research Infrastructure
TS AVBPQMOTIRES EMOTRLES for the Arts and Humanitie

XML-related technologies

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

* DTD (Document Type Definition) and XML Schemas are used to
define legal XML tags and their attributes for particular purposes

* CSS (Cascading Style Sheets) describe how to display HTML or
XML in a browser

XSLT (eXtensible Stylesheet Language Transformations) and
XPath are used to translate from one form of XML to another

* DOM (Document Object Model), SAX (Simple API for XML, and
JAXP (Java APT for XML Processing) are all APIs for XML
parsing

G8vas, o 10

e 5
gt 23
e

>

& Simple XML example

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

<?xml version="1.0"?>

<weatherReport>
<date>3/10/2014</date>
<city>Athens</city><state>Attika</state>
<country>Greece</country>
High Temp: <high scale="C">20</high>
Low Temp: <low scale="C">14</low>
Morning: <morning>Partly cloudy, Hazy</morning>
Afternoon: <afternoon>Sunny &: hot</afternoon>
Evening: <evening>Clear and Cooler</evening>

</weatherReport>

OSUC'IC %ARIAH-GR ‘2.'
Q Moo ctoronnie | Ao

2 = P o=
TG AVBPLMOTIRES EMOTALIS or the. d Humanities I N 4

. Qé"(O .
52 o T Rt VoL AN s

11

Overall structure

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

An XML document may start with one or more processing
instructions (PIs) or directives:

<?xml version="1.0"?>
<?xml-stylesheet type="text/css" href="ss.css"?>

Following the directives, there must be exactly one root
element containing all the rest of the XML:

<weatherReport>

</weatherReport>

SSUC'IC %ARIAH-GR 12
St R

XML building blocks

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

Aside from the directives, an XML document is built from:
* elements: high in <high scale="C">14</high>

* tags, in pairs: <high scale="C">20</high>

* attributes: <high scale="C">20</high>
*entities: <afternoon>Sunny &: hot</afternoon>

* character data, which may be:

parsed (processed as XML)--this is the default
unparsed (all characters stand for themselves)

Sé 'C %ARIAH-GR

oo YroSopisv yia my Eptuva Digital Research Infrastructure
NG AvBp@mOTIRS EMOTAES for the Arts and Humanities

13

Elements and attributes

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

*Attributes and elements are somewhat
inferchangeable

‘Example using just elements:

<name>
<first>Nikolaos</first>
<last>Papadakis</last>
</name>

‘Example using attributes:
<name first="Nikolaos" last="Papadakis"></name>

* Elements are easier to use in programs

*Attributes often contain metadata, such as unique
IDs

GEvaC_ UBamarcr 14

Dig
for the Arts and Humanities

]
oe
>

Well-formed XML

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

‘Every element must have both a start tag and an end tag,
e.g. <name> ... </name>

*But empty elements can be abbreviated: <break />.
XML tags are case sensitive

XML tags may not begin with the letters xml, in any
combination of cases

‘Elements must be properly nested, e.g. not <i>bold and
italic</i>

‘Every XML document must have one and only one root element

‘The values of attributes must be enclosed in single or double
quotes, e.g. <time unit="days">

Character data cannot contain < or &

15

Digital Research Infrastructure

-
Gopds, Vaw= B
.

anities
280 o
e st a B

Special chars

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

Five special characters must be written as entities:

Gamp; for & (almost always necessary)

< for < (almost always necessary)
Ggt; for > (not usually necessary)
" for " (necessary inside double quotes)

' for ' (necessary inside single quotes)

These entities can be used even in places where they are not absolutely
required
These are the only predefined entities in XML

. {,
o(dvacg DARIAH-GR
Aliero YroSepdv yia v Epesva Digital Research Infrastructure
TS AVBPQMOTIRES EMOTRLES for the Arts and Humanities

16

XML declaration

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

*The XML declaration looks like this:
<?xml version="1.0" encoding="UTF-8"
standalone="yes"?>

*The XML declaration is not required by browsers, but is
required by most XML processors (so include itl)

‘If present, the XML declaration must be first--not even
whitespace should precede it

‘Note that the brackets are <? and ?>
version="1.0" is required (this is the only version so far)

*encoding can be "UTF-8" (ASCII) or "UTF-16" (Unicode), or
something else, or it can be omitted

standalone tells whether there is a separate DTD

G8vas, o 17

o 3
gt 23
g

>

Processing instructions

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

*PIs (Processing Instructions) may occur anywhere in
the XML document (but usually first)

*A PI is a command to the program processing the XML
document to handle it in a certain way

XML documents are typically processed by more than
one program

*Programs that do not recognize a given PI should just
ignhore it
*General format of a PI: <?target instructions?>

‘Example: <?xml-stylesheet type="text/css"
href="mySheet.css"?>

§8vac “Bamuror 18

Comments

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

<!-- This is a comment in both HTML and XML -->
Comments can be put anywhere in an XML document
Comments are useful for:

Explaining the structure of an XML document to humans

Commenting out parts of the XML during development and testing

Comments are not elements and do not have an end tag
The blanks after <!-- and before --> are optional

The character sequence -- cannot occur in the comment
The closing bracket must be -->

Comments are not displayed by browsers, but can be seen by anyone
who looks at the source code

SUGC.' %ARIAH -GR

Ao YmoSopdy yi
mAmmmmunm\wc

19

CDATA

Avookapn Kelpévwy Kai avaAuon ToTrwyv, ABfRva 3-7 Nog 2014

* By default, all text inside an XML document is parsed

* text to be treated as unparsed character data by
enclosing it in <![CDATA[... 11>

*Any characters, even & and <, can occur inside a
CDATA

* Whitespace inside a CDATA is (usually) preserved

* The only real restriction is that the character sequence
11> cannot occur inside a CDATA

* CDATA is useful when your text has a lot of illegal
characters (for example, if your XML document contains
some HTML text)

OSUC'IC.' "”BARlAH-GR 20
Qmmw::mmm‘::" o

Names in XML

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

* Names (as used for tags and attributes) must begin with a
letter or underscore, and can consist of:

*Letters, both Roman (English) and foreign
*Digits, both Roman and foreign
* Dot (.)

* Hyphen (-)
* Underscore ()

* Colon (:) should be used only for namespaces

SUGC.' %ARIAH -GR

Ao YmoSopdy yi
mAmmlmﬂ;nnﬂM

21

Namespaces

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

* Recall that DTDs are used to define the tags that can be used in
an XML document

* An XML document may reference more than one DTD
Namespaces are a way to specify which DTD defines a given tag
XML, like Java, uses qualified names

This helps to avoid collisions between names
Java: myObject.myVariable
XML: myDTD:myTag

Note that XML uses a colon (:) rather than a dot (.)

GEvaC_ UBamarcr

Dig
for the Arts and Humanities

22

Namespaces and URTs

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

A namespace is defined as a unique string

To guarantee uniqueness, typically a URI (Uniform Resource Indicator) is
used, because the author “owns” the domain

It doesn't have to be a "real” URI; it just has to be a unique string

Example: http://www.nkpap.org/nameSpace

There are two ways to use namespaces:

Declare a default namespace

Associate a prefix with a namespace, then use the prefix in the XML to
refer to the namespace

SUGC.' %ARIAH -GR

Ao YmoSopdy yi
mAmmlmﬂ;nnﬂM

23

Namespace syntax

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

In any start tag you can use the reserved attribute name xmins: <book
xmlns="http://www.nkpap.org/nameSpace">

This namespace will be used as the default for all elements up to the
corresponding end tag

* You can override it with a specific prefix

You can use almost this same form to declare a prefix: <book
xmlns:dave="http://www.nkpap.org/nameSpace">

* Use this prefix on every tag and attribute you want to use from this
namespace, including end tags--it is not a default prefix <dave:chapter
dave:number="1">To Begin</dave:chapter>

You can use the prefix in the start tag in which it is defined: <dave:book
xmins:dave="http://www.nkpap.org/nameSpace"”>

. {,

'()' dvacg DARIAH-GR
Alkroo YmoSopdv yia mv Epeva Digital Research Infrastructure
TS AVBPQMOTIRES EMOTRLES for the Arts and Humanitie:

24

Review of XML rules

Avookapn Kelpévwy Kai avaAuon ToTrwyv, ABfRva 3-7 Nog 2014

*Start with <?xml version="1"?>

XML is case sensitive

*Must have exactly one root element

* Every element must have a closing tag
* Elements must be properly nested

 Attribute values must be enclosed in double
or single quotation marks

* There are only five predeclared entities

Q dvacg %ARlAH-GR 25
ommw::mmm‘::" o

A well-structured example

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

<novel>
<foreword>
<paragraph> This is the great American novel.
</paragraph>
</foreword>
<chapter number="1">
<paragraph>It was a dark and stormy night.
</paragraph>
<paragraph>Suddenly, a shot rang out!
</paragraph>
</chapter>
</novel>

G dvacg %ARIAH-GR 26
D et e

.
s & . -
Tog sy 0 ¥

XML as a tree

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

novel
foreword chapter
number="1"
paragraph paragraph paragraph
This is the great It was a dark Suddenly, a shot
American novel. and stormy night. rang out!

%ARIAH-GR

Digital Research Infrastructure
for the Arts and Humanities

27

Valid XML

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

You can make up your own XML tags and attributes, but...
...any program that uses the XML must know what to expect!

* A DTD (Document Type Definition) defines what tags are legal and
where they can occur in the XML

* An XML document does not require a DTD
* XML is well-structured if it follows the rules given earlier

* In addition, XML is valid if it declares a DTD and conforms to that
DTD

* A DTD can be included in the XML, but is typically a separate
document

* Errors in XML documents will stop XML programs
* Some alternatives to DTDs are XML Schemas and RELAX NG

Q t"’ _
O30, T 28

Digital Research Infrastructure
and Hu

Viewing XML

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

* XML is designed to be processed by computer programs, not to
be displayed to humans

*Nevertheless, almost all current browsers can display XML
documents

* They don't all display it the same way
* They may not display it at all if it has errors

For best results, update your browsers to the newest available
versions

Remember:
HTML is designed to be viewed,
XML is designed to be used

Gvag “Bumcn 29

Di
for the Arts and Humanities

Extended document standards

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

*You can define your own XML tag sets, but here are some
already available:

*XHTML: HTML redefined in XML

*SMIL: Synchronized Multimedia Integration Language
*MathML: Mathematical Markup Language

*SVG: Scalable Vector Graphics

*‘DrawML: Drawing Metalanguage

*ICE: Information and Content Exchange

*ebXML: Electronic Business with XML

‘cxml: Commerce XML

*CBL: Common Business Library

G8vas,_ 30

Vocabulary

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

SGML: Standard Generalized Markup Language

XML : Extensible Markup Language

DTD: Document Type Definition

element: a start and end tag, along with their contents
attribute: a value given in the start tag of an element
entity: a representation of a particular character or string

PI: a Processing Instruction, to possibly be used by a
program that processes this XML

namespace: a unique string that references a DTD
well-formed XML: XML that follows the basic syntax rules
valid XML: well-formed XML that conforms to a DTD

G8vas, o 31

o 3
gt 23
g

>

-.-..'r
ARAAHMIA b %
i

i

Avaokan KeIPEvwy Kal avaAuon ToTTwy, ABnva 3-7 Nog 2014

XPath

8 dvacg €5AR|AH-GR 32

oo YroSopisv yia my Eptuva Digital Research Infrastructure
ong AvepwmeTiis EmaTILIES for the Arts and Humanities

XML and RDBMs

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

Database Side: XML is a way to organize
data:

* Relational databases organize data in tables

* XML documents organize data in ordered trees

'() & ac DARIAH-GR
Aliero YroSepdv yia v Epesva Digital Research Infrastructure
oG AVEpWMOTIRIS EMOTRES for the Arts and Humanl

e 5
]
e
>

33

Data Management:
-- Relational vs. XML

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

Relational data are well organized - fully structured (more strict):

* E-R modeling to model the data structures in the application;

* E-R diagram is converted to relational tables and integrity constraints (relational
schemas)

XML data are semi-structured (more flexible):
* Schemas may be unfixed, or unknown (flexible - anyone can author a document);

* Suitable for data integration (data on the web, data exchange between different
enterprises).

SUGC.' %ARIAH -GR

Ao YmoSopdy yi
mAwpﬂnmﬂ;nnﬂM

34

Relational vs. XML

Avookapn Kelpévwy Kai avaAuon ToTrwyv, ABfRva 3-7 Nog 2014

* XML is not meant to replace relational
database systems

* RDBMSs are well suited to OLTP applications
(e.g., electronic banking) which has 1000+
small transactions per minute

* XML is suitable data exchange over
heterogeneous data sources (e.g., Web
services) that allow them to “talk”.

‘()' SUGC.' DARIAH-GR
Alkroo YmoSopdv yia mv Epeva Digital Research Infrastructure
oTg AvepwmaTKis EmaTiuES for the Arts and Humanities

35

When should we use XML

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

* Web services:

* SOAP,
* WSDL,
« UDDI

Any data having hierarchical structure:

* Email

* Header - from, to, cc, bcc..

*Body - my message, replied email ...

Network log files

 IP address, time, request type, error code

QSLAC V3arian-
Q SUGC DAIA%"ISANH GR

Ao YroSopiv yia Ty Epenva Digital Research Infrastructure
NG AvBp@mOTIRS EMOTAES for the Arts and Humanitie

36

Remember XML IS a treelll

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

Gtitle some free text Sect
Introduction @Qtitle //A\\\\\\;;bt
to XML ‘ '
@title N
What is XML? il

8 dvacg %ARIAH-GR

oo YroSopisv yia my Eptuva Digital Research Infrastructure
TG AVBPLMOTIRES EMOTALIS for the Arts and Humanities

37

Paths analogies

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

Operating system: Xpath
/ =the root directory /library = the root element (if named library)

/library/book/chapter/section = every section

/users/dave/foo = the (one) file named foo in g ; \
element in a chapter in every book in the library

dave in users

section = every section element that is a child of

foo = the (one) file named foo in the current R Errent ot ot

directory

a . =the current element
. =the current directory

.. =parent of the current element
. =the parent directory

/library/book/chapter/* = all the elements in
/users/dave/* = all the files in /users/dave /library/book/chapter

8506(%A IAH-GR

oo YroSopisv yia my Eptuva Digital Research Infrastructure
TG AVBPLMOTIRES EMOTALIS for the Arts and Humanities

38

'.f’: al?

Slashes

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

A path that begins with a / represents an absolute path, starting from the
top of the document

* Example: /email/message/header/from
* Note that even an absolute path can select more than one element

* A slash by itself means “"the whole document”

A path that does not begin with a / represents a path starting from the
current element

* Example: header/from
A path that begins with // can start from anywhere in the document

*Example: //header/from selects every element from that is a child of an element
header

* This can be expensive, since it involves searching the entire document

. ‘n,

'() dvacg DARIAH-GR
mmmmmmmmmm “Eptuva Digital Research Infrastructure
TS AVBPQMOTIRES EMOTRLES for the Arts and Humaniti

39

Brackets and last()

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

A number in brackets selects a particular matching child (counting starts from 1,
except in Internet Explorer)

* Example: /library/book[1] selects the first book of the library
* Example: //chapter/section[2] selects the second section of every chapter in the XML document
* Example: //book/chapter[1]/section[2]

* Only matching elements are counted: for example, if a book has both sections and exercises,
the latter are ignored when counting sections

The function last() in brackets selects the last matching child

* Example: /library/book/chapter[last()]
You can even do simple arithmetic

* Example: /library/book/chapter[last()-1]

'() dvacg {DARIAH-GR L
mmmmmmmmmm “Eptuva Digital Research Infrastructure
TS AVBPQMOTIRES EMOTRLES for the Arts and Humanitie

H
\d .
"':0 i :‘ “a “_“:.n‘e ,‘..-F- o

Stars

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

A star, or asterisk, is a "wild card”"—it means "all the
elements at this level”

* Example: /library/book/chapter/* selects every child of
every chapter of every book in the library

* Example: //book/* selects every child of every book
(chapters, tableOfContents, index, etc.)

* Example: /*/*/*/paragraph selects every paragraph that
has exactly three ancestors

* Example: //* selects every element in the entire
document

G8vas, o

41

Attributes I

Avaokagn Keipévwy Kal avaAuon témwyv, ABRva 3-7 Noe 2014

You can select attributes by themselves, or elements that have
certain attributes

*Remember: an attribute consists of a name-value pair, for example in <chapter
num="5">, the attribute is named num
*To choose the attribute itself, prefix the name with @

* Example: @num will choose every attribute named num

* Example: //@* will choose every attribute, everywhere in the document

To choose elements that have a given attribute, put the attribute
name in square brackets

*Example: //chapter[@num] will select every chapter element (anywhere in the
document) that has an attribute named num

G dvacg ‘%ARlAH-GR 42
D - W e

oTE AvBpamaTIRiS Eme

Attributes IT

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

/Ichapter[@num] selects every chapter element with an attribute
num

//chapter[not(@num)] selects every chapter element that does not
have a nhum attribute

//Ichapter[@*] selects every chapter element that has any attribute

//chapter[not(@*)] selects every chapter element with no attributes

8506(%ARIAH-GR 43
SRR S

o ;
oo
>

Values of attributes

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

//chapter[@num="3"] selects every chapter element with an attribute num
with value 3

//chapter[not(@num)] selects every chapter element that does not have a
num attribute

//chapter[@*] selects every chapter element that has any attribute
//chapter[not(@*)] selects every chapter element with no attributes

The normalize-space() function can be used to remove leading and trailing
spaces from a value before comparison

* Example: //chapter[normalize-space(@num)="3"]

SSUC'IC %ARIAH-GR 44
et g b e

;\.‘ e -
3
T AQHMNAN
. Xes

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

An axis (plural axes) is a set of nodes relative to a given node; X::Y
means “choose Y from the X axis”

self:: is the set of current nodes (not too useful)

self::node() is the current node
child:: is the default, so /child::X is the same as /X

* parent:: is the parent of the current node

* ancestor:: is all ancestors of the current node, up to and including the root

» descendant:: is all descendants of the current node

% (Note: never contains attribute or namespace nodes)

* preceding:: is everything before the current node in the entire XML
document

* following:: is everything after the current node in the entire XML document

8 dvacg %ARIAH-GR

oo YroSopisv yia my Eptuva Digital Research Infrastructure
NG AvBp@mOTIRS EMOTAES for the Arts and Humanities

45

Axes (outline view)

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

<library> //chapter[2]/self::*
<chapter/> //chapter[2]/preceding::*

<chapter>

<section>
<paragraph/
<paragraph/>
</section
</chapter>
<chapter/>
</book>
<book/>
</library>

//chapter[2]/following::*
//chapter[2]/ancestor::*

//chapter[2]/descendant::*

Starting from a given node, the self, preceding, following, ancestor, and descendant axes
form a partition of all the nodes (if we ignore attribute and namespace nodes)

ac DARIAH-GR 46
A Sopdv yia v Epava Digital Research Infrastructure
AvepumoTiis EmOTLES for the Arts and Humanities

Axes (tree view)

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

library
ancestor
following
book|[1] book|[2]
preceding
chapter[1] chapter[2] chapter|[3]
section[1]
descenW\
paragraph([1] paragraph([2]

SSUGC %ARIAH GR 47

ovyia Dig nme rm nfri ructure
TG AVBPLMOTIRES EMOTALIS for m s and Humanities

r - Axis examples

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

//book/descendant::* is all descendants of every book
//book/descendant::section is all section descendants of every book
/Iparent::* is every element that is a parent, i.e., is not a leaf
//section/parent::* is every parent of a section element
//parent::chapter is every chapter that is a parent, i.e., has children

/library/book[3]/following::* is everything after the third book in the
library

g 8 :
8500(.’ %ARIAH-GR L e W 48
Sepne | N P9 L s e :
- Y
X AT PN -‘!"Lf!f..'..~ 57 Al @

More axes

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

ancestor-or-self:: ancestors plus the current node

descendant-or-self:: descendants plus the current node

attribute:: is all attributes of the current node

namespace:: is all namespace nodes of the current node

preceding:: is everything before the current node in the entire XML document

following-sibling:: is all siblings after the current node

Note: preceding-sibling:: and following-sibling:: do not apply to attribute nodes or
namespace nodes

. {,
8 dvacg DARIAH-GR
Aliero YroSepdv yia v Epesva Digital Research Infrastructure
TS AVBPQMOTIRES EMOTRLES for the Arts and Humanities

49

o o Abbreviations for axes

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

(none) is the same as child::

@ is the same as attribute::

is the same as self::node()

JIX is the same as self::node()/descendant-or-self::node()/child::X

is the same as parent::node()

../X is the same as parent::node()/child::X

// is the same as /descendant-or-self::node()/

/X is the same as /descendant-or-self::node()/child::X

8 dvacg %ARIAH-GR

oo YroSopisv yia my Eptuva Digital Research Infrastructure
TG AVBPLMOTIRES EMOTALIS for the.

50

'.f’: al?

Arithmetic expressions

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

+ add

- subtract

k multiply

div (not /) divide

mod modulo (remainder)

. {,
'()' dvacg DARIAH-GR
Aliero YroSepdv yia v Epesva Digital Research Infrastructure
TS AVBPQMOTIRES EMOTRLES for the Arts and Humanities

.
s & . -
Tog sy 0 ¥

51

Equality tests

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

= means “equal to” (Notice it's not ==)
= means “not equal to”
But it's not that simple!

value = node-set will be true if the node-set contains any node with a value
that matches value

value |= node-set will be true if the node-set contains any node with a value
that does not match value

Hence,

value = node-set and value |= node-set may both be true at the same timel!

QSLAC V3arian-
Q SUGC DAIA%"ISANH GR

Ao YroSopiv yia Ty Epenva Digital Research Infrastructure
NG AvBp@mOTIRS EMOTAES for the Arts and Humanitie

52

Other boolean operators

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

and (infix operator)

or (infix operator)

* Example: count = O or count = 1

not() (function)

The following are used for numerical comparisons only:

< “less than” Some places may require <

<= “less than Some places may require <= or equal to”
> “greater than" Some places may require >

>= “greater than Some places may require >:.= or equal to”

SUGC %ARIAH GR

Alxruo YmoSopdv yia mv Epeuva Infrastructure
mAmwmﬂ: EmoThug v hA uHm nities

53

Some XPath functions

Avaokagn Keipévwy Kal avaAuon témwyv, ABfva 3-7 Noe 2014

XPath contains a number of functions on node sets, numbers, and strings: here are a few of
them:

count(elem) counts the number of selected elements

Example: //chapter[count(section)=1] selects chapters with exactly two section children
name() returns the name of the element

Example: //*[name()="section'] is the same as //section

starts-with(argl, arg2) tests if argl starts with arg2

Example: //*[starts-with(name(), 'sec’]

contains(argl, arg2) tests if argl contains arg2

Example: //*[contains(name(), ‘ect’]

QSLAC V3arian-
Q SUGC DAIA%"ISANH GR

Ao YroSopiv yia Ty Epenva Digital Research Infrastructure
NG AvBp@mOTIRS EMOTAES for the Arts and Humaniti

54

o
s &
Tog sy 0 ¥

	Slide 1
	PowerPoint Presentation
	Presentation Overview
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Elements and attributes
	Well-formed XML
	Slide 16
	XML declaration
	Processing instructions
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Another well-structured example
	Slide 27
	Slide 28
	Slide 29
	Extended document standards
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

