
1

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

WIFI

●SSID: Forthnet

●User: piop

●Passwd: piop1234

2

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Γλώσσες σήμανσης και
δομές αποθήκευσης

Νικόλαος ΠαπαδάκηςΝικόλαος Παπαδάκης
Δόκτωρ ΜηχανικόςΔόκτωρ Μηχανικός

3

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Presentation Overview

 XML and HTML
 XML basics
 More... XML
 XML Schemas and DTD
 Xpath
 Databases and SQL -similarities
 SPARQL and dbpedia
 Graph databases and Neo4J

4

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

HTML is used to mark up
text so it can be displayed
to users

HTML and XML

XML is used to mark up
data so it can be
processed by computers
XML describes only
content, or “meaning”

In XML, you make up your
own tags

HTML describes both structure
(e.g. <p>, <h2>,) and
appearance (e.g.
, , <i>)

HTML uses a fixed, unchangeable
set of tags

XML stands for eXtensible Markup Language

5

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

HTML and XML

● HTML and XML look similar, because they are both SGML
languages (SGML = Standard Generalized Markup Language)

● Both HTML and XML use elements enclosed in tags (e.g.
<body>This is an element</body>)

● Both use tag attributes (e.g.,
)

● Both use entities (<, >, &, ", ')

● More precisely,

● HTML is defined in SGML
● XML is a (very small) subset of SGML

6

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

A simple web page

7

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Its html source code...

<html>

<head>

<meta name="generator" content="web mining extractor"/>

<title></title>

</head>

<body> <p style="font-size: 200%; font-weight: bold">Welcome</p>

<table border="1" width="100%"> <tr>

<td width="100%">NTUA is National Technical University of Athens</td> </tr><tr>

<td width="100%"></td>

</tr></table>

</body>

</html>

8

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Its tree representation

HTML

BODYHEAD

TITLEMETA TABLEP

TRTR

TEXTA

TD

IMG

TD

TEXT

9

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

HTML and XML

● HTML is for humans

● HTML describes web pages
● You don’t want to see error messages about the web pages you visit
● Browsers ignore and/or correct as many HTML errors as they can, so HTML

is often sloppy

● XML is for computers

● XML describes data
● The rules are strict and errors are not allowed

● In this way, XML is like a programming language
● Current versions of most browsers can display XML

● However, browser support of XML is spotty at best

10

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

XML-related technologies

● DTD (Document Type Definition) and XML Schemas are used to
define legal XML tags and their attributes for particular purposes

● CSS (Cascading Style Sheets) describe how to display HTML or
XML in a browser

●XSLT (eXtensible Stylesheet Language Transformations) and
XPath are used to translate from one form of XML to another

● DOM (Document Object Model), SAX (Simple API for XML, and
JAXP (Java API for XML Processing) are all APIs for XML
parsing

11

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Simple XML example

<?xml version="1.0"?>

<weatherReport>

 <date>3/10/2014</date>

 <city>Athens</city><state>Attika</state>

 <country>Greece</country>

 High Temp: <high scale="C">20</high>

 Low Temp: <low scale="C">14</low>

 Morning: <morning>Partly cloudy, Hazy</morning>

 Afternoon: <afternoon>Sunny & hot</afternoon>

 Evening: <evening>Clear and Cooler</evening>

</weatherReport>

12

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Overall structure

An XML document may start with one or more processing
instructions (PIs) or directives:

<?xml version="1.0"?>
<?xml-stylesheet type="text/css" href="ss.css"?>

Following the directives, there must be exactly one root
element containing all the rest of the XML:

<weatherReport>
 ...
</weatherReport>

13

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

XML building blocks

Aside from the directives, an XML document is built from:

● elements: high in <high scale="C">14</high>

● tags, in pairs: <high scale="C">20</high>

● attributes: <high scale="C">20</high>

● entities: <afternoon>Sunny & hot</afternoon>

● character data, which may be:

parsed (processed as XML)--this is the default

unparsed (all characters stand for themselves)

14

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

●Attributes and elements are somewhat
interchangeable
●Example using just elements:

 <name>
<first>Nikolaos</first>
<last>Papadakis</last>
</name>

●Example using attributes:
 <name first="Nikolaos" last="Papadakis"></name>

● Elements are easier to use in programs
●Attributes often contain metadata, such as unique
IDs

Elements and attributes

15

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

●Every element must have both a start tag and an end tag,
e.g. <name> ... </name>

●But empty elements can be abbreviated: <break />.
●XML tags are case sensitive
●XML tags may not begin with the letters xml, in any
combination of cases

●Elements must be properly nested, e.g. not <i>bold and
italic</i>
●Every XML document must have one and only one root element
●The values of attributes must be enclosed in single or double
quotes, e.g. <time unit="days">
●Character data cannot contain < or &

Well-formed XML

16

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Special chars

Five special characters must be written as entities:

& for & (almost always necessary)

< for < (almost always necessary)

> for > (not usually necessary)

" for " (necessary inside double quotes)

' for ' (necessary inside single quotes)

These entities can be used even in places where they are not absolutely
required
These are the only predefined entities in XML

17

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

●The XML declaration looks like this:
<?xml version="1.0" encoding="UTF-8"
standalone="yes"?>

●The XML declaration is not required by browsers, but is
required by most XML processors (so include it!)
●If present, the XML declaration must be first--not even
whitespace should precede it
●Note that the brackets are <? and ?>
●version="1.0" is required (this is the only version so far)
●encoding can be "UTF-8" (ASCII) or "UTF-16" (Unicode), or
something else, or it can be omitted
●standalone tells whether there is a separate DTD

XML declaration

18

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Processing instructions

●PIs (Processing Instructions) may occur anywhere in
the XML document (but usually first)
●A PI is a command to the program processing the XML
document to handle it in a certain way
●XML documents are typically processed by more than
one program
●Programs that do not recognize a given PI should just
ignore it
●General format of a PI: <?target instructions?>
●Example: <?xml-stylesheet type="text/css"
href="mySheet.css"?>

19

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Comments

<!-- This is a comment in both HTML and XML -->

Comments can be put anywhere in an XML document
Comments are useful for:

Explaining the structure of an XML document to humans

Commenting out parts of the XML during development and testing

Comments are not elements and do not have an end tag
The blanks after <!-- and before --> are optional
The character sequence -- cannot occur in the comment
The closing bracket must be -->

Comments are not displayed by browsers, but can be seen by anyone
who looks at the source code

20

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

CDATA

● By default, all text inside an XML document is parsed
● text to be treated as unparsed character data by
enclosing it in <![CDATA[...]]>
●Any characters, even & and <, can occur inside a
CDATA
● Whitespace inside a CDATA is (usually) preserved
● The only real restriction is that the character sequence
]]> cannot occur inside a CDATA
● CDATA is useful when your text has a lot of illegal
characters (for example, if your XML document contains
some HTML text)

21

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Names in XML

● Names (as used for tags and attributes) must begin with a
letter or underscore, and can consist of:

● Letters, both Roman (English) and foreign
● Digits, both Roman and foreign
● Dot (.)

● Hyphen (-)

● Underscore (_)

● Colon (:) should be used only for namespaces

22

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Namespaces

● Recall that DTDs are used to define the tags that can be used in
an XML document
● An XML document may reference more than one DTD
Namespaces are a way to specify which DTD defines a given tag
XML, like Java, uses qualified names

This helps to avoid collisions between names

Java: myObject.myVariable

XML: myDTD:myTag

Note that XML uses a colon (:) rather than a dot (.)

23

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Namespaces and URIs

A namespace is defined as a unique string

To guarantee uniqueness, typically a URI (Uniform Resource Indicator) is
used, because the author “owns” the domain

It doesn't have to be a “real” URI; it just has to be a unique string

Example: http://www.nkpap.org/nameSpace

There are two ways to use namespaces:

Declare a default namespace

Associate a prefix with a namespace, then use the prefix in the XML to
refer to the namespace

24

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Namespace syntax

In any start tag you can use the reserved attribute name xmlns: <book
xmlns="http://www.nkpap.org/nameSpace">

This namespace will be used as the default for all elements up to the
corresponding end tag

● You can override it with a specific prefix

You can use almost this same form to declare a prefix: <book
xmlns:dave="http://www.nkpap.org/nameSpace">

● Use this prefix on every tag and attribute you want to use from this
namespace, including end tags--it is not a default prefix <dave:chapter
dave:number="1">To Begin</dave:chapter>

You can use the prefix in the start tag in which it is defined: <dave:book
xmlns:dave="http://www.nkpap.org/nameSpace">

25

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Review of XML rules

●Start with <?xml version="1"?>
●XML is case sensitive
●Must have exactly one root element
● Every element must have a closing tag
● Elements must be properly nested
● Attribute values must be enclosed in double
or single quotation marks
● There are only five predeclared entities

26

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

 <novel>
 <foreword>
 <paragraph> This is the great American novel.
 </paragraph>
 </foreword>
 <chapter number="1">
 <paragraph>It was a dark and stormy night.
 </paragraph>
 <paragraph>Suddenly, a shot rang out!
 </paragraph>
 </chapter>
</novel>

A well-structured example

27

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

XML as a tree

novel

foreword chapter
number="1"

paragraph paragraph paragraph

This is the great
American novel.

It was a dark
and stormy night.

Suddenly, a shot
rang out!

28

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Valid XML

You can make up your own XML tags and attributes, but...

...any program that uses the XML must know what to expect!

● A DTD (Document Type Definition) defines what tags are legal and
where they can occur in the XML
● An XML document does not require a DTD
● XML is well-structured if it follows the rules given earlier
● In addition, XML is valid if it declares a DTD and conforms to that
DTD
● A DTD can be included in the XML, but is typically a separate
document
● Errors in XML documents will stop XML programs
● Some alternatives to DTDs are XML Schemas and RELAX NG

29

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Viewing XML

● XML is designed to be processed by computer programs, not to
be displayed to humans

● Nevertheless, almost all current browsers can display XML
documents

● They don’t all display it the same way
● They may not display it at all if it has errors

For best results, update your browsers to the newest available
versions

Remember:
 HTML is designed to be viewed,
 XML is designed to be used

30

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

●You can define your own XML tag sets, but here are some
already available:

●XHTML: HTML redefined in XML
●SMIL: Synchronized Multimedia Integration Language
●MathML: Mathematical Markup Language
●SVG: Scalable Vector Graphics
●DrawML: Drawing MetaLanguage
●ICE: Information and Content Exchange
●ebXML: Electronic Business with XML
●cxml: Commerce XML
●CBL: Common Business Library

Extended document standards

31

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Vocabulary

SGML: Standard Generalized Markup Language
XML : Extensible Markup Language
DTD: Document Type Definition
element: a start and end tag, along with their contents
attribute: a value given in the start tag of an element
entity: a representation of a particular character or string
PI: a Processing Instruction, to possibly be used by a
program that processes this XML
namespace: a unique string that references a DTD
well-formed XML: XML that follows the basic syntax rules
valid XML: well-formed XML that conforms to a DTD

32

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

XPath

33

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

XML and RDBMs

Database Side: XML is a way to organize
data:

● Relational databases organize data in tables

● XML documents organize data in ordered trees

34

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Data Management:
-- Relational vs. XML

Relational data are well organized – fully structured (more strict):

● E-R modeling to model the data structures in the application;

● E-R diagram is converted to relational tables and integrity constraints (relational
schemas)

XML data are semi-structured (more flexible):

● Schemas may be unfixed, or unknown (flexible – anyone can author a document);

● Suitable for data integration (data on the web, data exchange between different
enterprises).

35

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Relational vs. XML

● XML is not meant to replace relational
database systems

● RDBMSs are well suited to OLTP applications
(e.g., electronic banking) which has 1000+
small transactions per minute
● XML is suitable data exchange over
heterogeneous data sources (e.g., Web
services) that allow them to “talk”.

36

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

When should we use XML

● Web services:

● SOAP,
● WSDL,
● UDDI

Any data having hierarchical structure:

● Email

● Header – from, to, cc, bcc…
● Body – my message, replied email …

Network log files

● IP address, time, request type, error code

37

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Remember XML IS a tree!!!

sect

sect

@title

Introduction
to XML

@title

What is XML?

some free text

@title

…

…

…

Hierarchical data model
An XML document is an ordered tree;

38

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Paths analogies

Operating system:

/ = the root directory

/users/dave/foo = the (one) file named foo in
dave in users

foo = the (one) file named foo in the current
directory

. = the current directory

.. = the parent directory

/users/dave/* = all the files in /users/dave

Xpath

/library = the root element (if named library)

/library/book/chapter/section = every section
element in a chapter in every book in the library

section = every section element that is a child of
the current element

. = the current element

.. = parent of the current element

/library/book/chapter/* = all the elements in
/library/book/chapter

39

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Slashes

 A path that begins with a / represents an absolute path, starting from the
top of the document

● Example: /email/message/header/from
● Note that even an absolute path can select more than one element
● A slash by itself means “the whole document”

A path that does not begin with a / represents a path starting from the
current element

● Example: header/from

A path that begins with // can start from anywhere in the document

● Example: //header/from selects every element from that is a child of an element
header
● This can be expensive, since it involves searching the entire document

40

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Brackets and last()

A number in brackets selects a particular matching child (counting starts from 1,
except in Internet Explorer)

● Example: /library/book[1] selects the first book of the library

● Example: //chapter/section[2] selects the second section of every chapter in the XML document
● Example: //book/chapter[1]/section[2]

● Only matching elements are counted; for example, if a book has both sections and exercises,
the latter are ignored when counting sections

The function last() in brackets selects the last matching child

● Example: /library/book/chapter[last()]

You can even do simple arithmetic

● Example: /library/book/chapter[last()-1]

41

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Stars

A star, or asterisk, is a “wild card”—it means “all the
elements at this level”

● Example: /library/book/chapter/* selects every child of
every chapter of every book in the library

● Example: //book/* selects every child of every book
(chapters, tableOfContents, index, etc.)

● Example: /*/*/*/paragraph selects every paragraph that
has exactly three ancestors

● Example: //* selects every element in the entire
document

42

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Attributes I

You can select attributes by themselves, or elements that have
certain attributes

● Remember: an attribute consists of a name-value pair, for example in <chapter
num="5">, the attribute is named num

● To choose the attribute itself, prefix the name with @
● Example: @num will choose every attribute named num

● Example: //@* will choose every attribute, everywhere in the document

To choose elements that have a given attribute, put the attribute
name in square brackets

● Example: //chapter[@num] will select every chapter element (anywhere in the
document) that has an attribute named num

43

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Attributes II

//chapter[@num] selects every chapter element with an attribute
num

//chapter[not(@num)] selects every chapter element that does not
have a num attribute

//chapter[@*] selects every chapter element that has any attribute

//chapter[not(@*)] selects every chapter element with no attributes

44

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Values of attributes

//chapter[@num='3'] selects every chapter element with an attribute num
with value 3

//chapter[not(@num)] selects every chapter element that does not have a
num attribute

//chapter[@*] selects every chapter element that has any attribute

//chapter[not(@*)] selects every chapter element with no attributes

The normalize-space() function can be used to remove leading and trailing
spaces from a value before comparison

● Example: //chapter[normalize-space(@num)="3"]

45

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Axes

An axis (plural axes) is a set of nodes relative to a given node; X::Y
means “choose Y from the X axis”

● self:: is the set of current nodes (not too useful)
● self::node() is the current node
● child:: is the default, so /child::X is the same as /X
● parent:: is the parent of the current node
● ancestor:: is all ancestors of the current node, up to and including the root
● descendant:: is all descendants of the current node

● (Note: never contains attribute or namespace nodes)

● preceding:: is everything before the current node in the entire XML
document

● following:: is everything after the current node in the entire XML document

46

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Axes (outline view)

 <library>
 <book>
 <chapter/>
 <chapter>
 <section>
 <paragraph/>
 <paragraph/>
 </section>
 </chapter>
 <chapter/>
 </book>
 <book/>
</library>

//chapter[2]/self::*

//chapter[2]/preceding::*

//chapter[2]/following::*

//chapter[2]/ancestor::*

//chapter[2]/descendant::*

Starting from a given node, the self, preceding, following, ancestor, and descendant axes
form a partition of all the nodes (if we ignore attribute and namespace nodes)

47

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Axes (tree view)

paragraph[1] paragraph[2]

section[1]

chapter[2]chapter[1] chapter[3]

book[1] book[2]

library

self

ancestor

descendant

preceding

following

48

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Axis examples

//book/descendant::* is all descendants of every book

//book/descendant::section is all section descendants of every book

//parent::* is every element that is a parent, i.e., is not a leaf

//section/parent::* is every parent of a section element

//parent::chapter is every chapter that is a parent, i.e., has children

/library/book[3]/following::* is everything after the third book in the
library

49

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

More axes

ancestor-or-self:: ancestors plus the current node

descendant-or-self:: descendants plus the current node

attribute:: is all attributes of the current node

namespace:: is all namespace nodes of the current node

preceding:: is everything before the current node in the entire XML document

following-sibling:: is all siblings after the current node

Note: preceding-sibling:: and following-sibling:: do not apply to attribute nodes or
namespace nodes

50

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Abbreviations for axes

(none) is the same as child::

@ is the same as attribute::

. is the same as self::node()

.//X is the same as self::node()/descendant-or-self::node()/child::X

.. is the same as parent::node()

../X is the same as parent::node()/child::X

// is the same as /descendant-or-self::node()/

//X is the same as /descendant-or-self::node()/child::X

51

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Arithmetic expressions

+ add

- subtract

* multiply

div (not /) divide

mod modulo (remainder)

52

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Equality tests

= means “equal to” (Notice it’s not ==)

!= means “not equal to”

But it’s not that simple!

value = node-set will be true if the node-set contains any node with a value
that matches value

value != node-set will be true if the node-set contains any node with a value
that does not match value

Hence,

value = node-set and value != node-set may both be true at the same time!

53

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Other boolean operators

and (infix operator)

or (infix operator)

● Example: count = 0 or count = 1

not() (function)

The following are used for numerical comparisons only:

< “less than” Some places may require <

<= “less than Some places may require <= or equal to”

> “greater than” Some places may require >

>= “greater than Some places may require >= or equal to”

54

Ανασκαφή κειμένων και ανάλυση τόπων, Αθήνα 3-7 Νοε 2014

Some XPath functions

XPath contains a number of functions on node sets, numbers, and strings; here are a few of
them:

count(elem) counts the number of selected elements

Example: //chapter[count(section)=1] selects chapters with exactly two section children

name() returns the name of the element

Example: //*[name()='section'] is the same as //section

starts-with(arg1, arg2) tests if arg1 starts with arg2

Example: //*[starts-with(name(), 'sec']

contains(arg1, arg2) tests if arg1 contains arg2

Example: //*[contains(name(), 'ect']

	Slide 1
	PowerPoint Presentation
	Presentation Overview
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Elements and attributes
	Well-formed XML
	Slide 16
	XML declaration
	Processing instructions
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Another well-structured example
	Slide 27
	Slide 28
	Slide 29
	Extended document standards
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

